On Solving the Singular System Arisen from Poisson Equation with Neumann Boundary Condition
نویسندگان
چکیده
We consider solving the singular linear system arisen from the Poisson equation with the Neumann boundary condition. To handle the singularity, there are two usual approaches: one is to fix a Dirichlet boundary condition at one point, and the other seeks a unique solution in the orthogonal complement of the kernel. One may incorrectly presume that the two solutions are the similar to each other. In this work, however, we show that their solutions differ by a function that has a pole at the Dirichlet boundary condition. The pole of the function is comparable to that of the fundamental solution of the Laplace operator. Inevitably one of them should contain the pole, and accordingly has inferior accuracy than the other. According to our novel analysis in this work, it is the fixing method that contains the pole. The projection method is thus preferred to the fixing method, but it also contains cons: in finding a unique solution by conjugate gradient method, it requires extra steps per each iteration. In this work, we introduce an improved method that contains the accuracy of the projection method without the extra steps. We carry out numerical experiments that validate our analysis and arguments.
منابع مشابه
A Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملLocal exact controllability of the 2D-Schrödinger-Poisson system
In this article, we investigate the exact controllability of the 2DSchrödinger-Poisson system, which couples a Schrödinger equation on a bounded domain of R with a Poisson equation for the electrical potential. The control acts on the system through a Neumann boundary condition on the potential, locally distributed on the boundary of the space domain. We prove several results, with or without n...
متن کاملVoltage laws for three-dimensional microdomains with cusp-shaped funnels derived from Poisson-Nernst-Planck equations
We study the electro-diffusion properties of a domain containing a cusp-shaped structure in three dimensions when one ionic specie is dominant. The mathematical problem consists in solving the steady-state Poisson-Nernst-Planck (PNP) equation with an integral constraint for the number of charges. A non-homogeneous Neumann boundary condition is imposed on the boundary. We construct an asymptotic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sci. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2016